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Classical and quantum dynamics of a spin-1
2
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Germany

Received 26 November 1999, in final form 17 February 2000

Abstract. We reply to a comment on ‘Semiclassical dynamics of a spin- 1
2 in an arbitrary magnetic

field’.

In a recent comment [1] Kochetov argues that our results [2] on the coherent state path integral
for a spin- 1

2 in an arbitrary magnetic field are based on a ‘classical spin action inconsistent with
the necessary boundary conditions’. Contrary from what is insinuated by the comment, our
paper is not concerned with the quantization of a classical spin but solely with the representation
of a quantum spin- 1

2 in terms of a spin-coherent state path integral. Hence, the comment by
Kochetov arguing primarily on a classical level is only vaguely relevant to our work and chiefly
reconsiders the author’s earlier work [3, 4] in the light of results in [2]. Indeed, the analysis
in [2] allows for some conclusions of relevance to Kochetov’s work as discussed below.

Before addressing the comment more specifically let us briefly reformulate the approach
in [2]. We start with the two-dimensional Hilbert space, represented in the basis of spin-
coherent states |�g〉 = D1/2(g)|↑〉, where g ∈ SU(2) [5]. Since |�h〉 = exp(iα)|↑〉 for an h
in the maximal torus, |�g〉 and |�g′ 〉 describe the same physical state if there exists a h ∈ U(1)
such that g′ = gh. Therefore, the group SU(2) can be viewed as fibre bundle over the base
manifold SU(2)/U(1) ≡ S2 with fibre U(1) [6] and the space of distinct spin-coherent states
is canonically isomorphic to these left cosets. Parametrizing any g ∈ SU(2)with Euler angles
(ϑ, ϕ, χ), we get

|�〉 = e− i
2χe−iϕSze−iϑSy |↑〉. (1)

Here, the first factor on the right-hand side is just a phase factor and the rest determines the
physical state. These states are not orthogonal but form an overcomplete basis in the Hilbert
space. The overlap is readily evaluated and the identity may be represented as

I = 1

2π

∫
sin(ϑ) dϑ dϕ|�〉〈�|. (2)

Employing a Trotter decomposition, the propagator may be written as

〈�′′|U(t)|�′〉 = lim
ε→0

N

∫ n∏
k=1

√
det ωij dϑk dϕk

× exp

{ n∑
k=0

[
log 〈�k+1|�k〉 +

i

2
(χk+1 − χk)− iε

〈�k+1|H(kε)|�k〉
〈�k+1|�k〉

]}
(3)
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where ε = t/n, (�0, χ0) = (�′, χ ′), (�n+1, χn+1) = (�′′, χ ′′). We are allowed to pass to the
continuum limit if the paths stay continuous for ε → 0, which is not guaranteed if no Wiener
measure occurs. Therefore, care must be taken in calculating the path integral [7–12]. To
ensure an integration over continuous Brownian motion paths, we introduce a regularization
by the spherical Wiener measure and are then allowed to write

〈�′′|U(t)|�′〉 = lim
ν→∞N

∫ t∏
s=0

√
det ωij dϑ(s) dϕ(s)

× exp

{
i
∫ t

0
ds

[
i

ν
(gϑϑ ϑ̇

2 + gϕϕϕ̇
2) + θϑ ϑ̇ + θϕϕ̇ −H(ϑ, ϕ, s)

]}
. (4)

Here, N = limn→∞
∏n
k=1

1
π

is a normalization factor, g = 1
4 (dϑ ⊗ dϑ + sin(ϑ)2 dϕ ⊗ dϕ)

the metrical tensor, ω = 1
2 sin(ϑ) dϑ ∧ dϕ the symplectic two-form of SU(2)/U(1) [13] and

θ = 1
2 (cos(ϑ) dϕ + dχ) its corresponding symplectic potential (ω = − dθ ).
Choosing in every left coset one special representant, i.e. fixing χ for every coherent state,

one defines a section of the SU(2) bundle. In particular, the choice χ = 0 was adopted in [2].
It is important to note that once χ has been fixed the symplectic potential is fixed as well and
manipulations of the form suggested by Kochetov [1] in equation (3) are no longer allowed.
The very same reasoning applies in the parametrization used by Kochetov. Within the Gaussian
decomposition [5] of the elements of SU(2) by g = z−hz+ for z− ∈ Z−, h ∈ U(1), z+ ∈ Z+

or equivalently g = z−b+ with b+ ∈ B+, we recognize that D1/2(g)|↑〉 = D1/2(z−h)|↑〉.
Parametrizing z− by the complex number ζ , the space of distinct spin coherent states is now
isomorphic to elements in SL(2,C)/B+

∼= SU(2)/U(1). If the isomorphismus is defined
explicitly by the spherical projection from the south pole of the sphere onto the complex plane,
one has ζ = tan( ϑ2 )e

iϕ , and makes use of a different section of the SU(2) bundle by setting
χ = −ϕ. Therefore, a corresponding phase factor appears:

|ζ 〉 = 1√
1 + |ζ |2

eζS−|↑〉 = e
i
2 ϕ|�〉. (5)

Again, with the choice χ = −ϕ there is no room for additional manipulations of the form (3)
in [1]. While Kochetov’s theory starts from a classical spin and employs geometric quantization
to obtain a quantum propagator after an ad hoc modification of the symplectic potential, no
such ambiguities arise if the representation of the quantum propagator in terms of a path integral
is considered.

A main point in the critique by Kochetov [1] is the claim that the approach in [2] disagrees
with boundary conditions in the classical limit. Since the physical states form a symplectic
two-dimensional differential manifold with the closed two-form ω, the classical dynamics
is determined by the Hamiltonian vector field ω(XH , ·) = dH which leads immediately
to the classical equations of motion (23) in [2]. Note that in general there is no classical
path connecting arbitrary but real boundary conditions �̄(0) = �̄′ and �̄(t) = �̄′′. This is
known as the ‘overspecification problem’. Kochetov modifies the action to allow always for a
‘classical’ path, which is usually complex. If one applied the same rules to a simple harmonic
oscillator there would be a ‘classical’ path connecting any initial phase space point (q ′, p′)
with any endpoint (q ′′, p′′). This is clearly not what is usually meant by classical. Hence, the
overspecification problem should not be removed in the classical limit. Yet, in the quantum
problem, there is indeed a semiclassical path for any pair of real boundary conditions (see
equations (23) and (24), (25) in [2]).

Finally, Kochetov believes that the exactness of the semiclassical propagator is
‘obvious’ and ‘self-evident’. Replacing Kochetov’s qualitative arguments by a more accurate
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treatment [14, 15], one finds the necessary condition θ(XH ) = H that θ is SU(2) invariant
and the stationary phase approximation becomes exact. For a Hamilton operator which is
a linear combination of all three generators of the SU(2) algebra we get three conditions
which cannot be satisfied generally by fixing the phase χ appropriately. Therefore, there are
no SU(2)-invariant potentials on S2 and although SU(2) is the group of isometric canonical
transformations on the two-sphere [16], it does not preserve the sections. Hence, for magnetic
fields of arbitrary time-dependence, the exactness of dominant stationary phase approximation
(DSPA) is not ‘self-evident’, and prior to our work [2] it was rather expected that the DSPA
would not provide a correct result [17].
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